Share Email Print
cover

Proceedings Paper

Visual-search models for location-known detection tasks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer’s search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer’s separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

Paper Details

Date Published: 10 March 2017
PDF: 6 pages
Proc. SPIE 10136, Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 1013612 (10 March 2017); doi: 10.1117/12.2254456
Show Author Affiliations
H. C. Gifford, Univ. of Houston (United States)
Z. Karbaschi, Univ. of Houston (United States)
K. Banerjee, Univ. of Houston (United States)
M. Das, Univ. of Houston (United States)


Published in SPIE Proceedings Vol. 10136:
Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment
Matthew A. Kupinski; Robert M. Nishikawa, Editor(s)

© SPIE. Terms of Use
Back to Top