Share Email Print
cover

Proceedings Paper

Exploring a new quantitative image marker to assess benefit of chemotherapy to ovarian cancer patients
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Accurately assessing the potential benefit of chemotherapy to cancer patients is an important prerequisite to developing precision medicine in cancer treatment. The previous study has shown that total psoas area (TPA) measured on preoperative cross-section CT image might be a good image marker to predict long-term outcome of pancreatic cancer patients after surgery. However, accurate and automated segmentation of TPA from the CT image is difficult due to the fuzzy boundary or connection of TPA to other muscle areas. In this study, we developed a new interactive computer-aided detection (ICAD) scheme aiming to segment TPA from the abdominal CT images more accurately and assess the feasibility of using this new quantitative image marker to predict the benefit of ovarian cancer patients receiving Bevacizumab-based chemotherapy. ICAD scheme was applied to identify a CT image slice of interest, which is located at the level of L3 (vertebral spines). The cross-sections of the right and left TPA are segmented using a set of adaptively adjusted boundary conditions. TPA is then quantitatively measured. In addition, recent studies have investigated that muscle radiation attenuation which reflects fat deposition in the tissue might be a good image feature for predicting the survival rate of cancer patients. The scheme and TPA measurement task were applied to a large national clinical trial database involving 1,247 ovarian cancer patients. By comparing with manual segmentation results, we found that ICAD scheme could yield higher accuracy and consistency for this task. Using a new ICAD scheme can provide clinical researchers a useful tool to more efficiently and accurately extract TPA as well as muscle radiation attenuation as new image makers, and allow them to investigate the discriminatory power of it to predict progression-free survival and/or overall survival of the cancer patients before and after taking chemotherapy.

Paper Details

Date Published: 13 March 2017
PDF: 7 pages
Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications, 101380I (13 March 2017); doi: 10.1117/12.2254163
Show Author Affiliations
Seyedehnafiseh Mirniaharikandehei, The Univ. of Oklahoma (United States)
Omkar Patil, The Univ. of Oklahoma (United States)
Faranak Aghaei, The Univ. of Oklahoma (United States)
Yunzhi Wang, The Univ. of Oklahoma (United States)
Bin Zheng, The Univ. of Oklahoma (United States)


Published in SPIE Proceedings Vol. 10138:
Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications
Tessa S. Cook; Jianguo Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top