Share Email Print
cover

Proceedings Paper

Mono-energy coronary angiography with a compact light source
Author(s): Elena Eggl; Korbinian Mechlem; Eva Braig; Stephanie Kulpe; Martin Dierolf; Benedikt Günther; Klaus Achterhold; Julia Herzen; Bernhard Gleich; Ernst Rummeny; Peter B. Noël; Franz Pfeiffer; Daniela Muenzel
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.

Paper Details

Date Published: 9 March 2017
PDF: 8 pages
Proc. SPIE 10132, Medical Imaging 2017: Physics of Medical Imaging, 101324L (9 March 2017); doi: 10.1117/12.2254053
Show Author Affiliations
Elena Eggl, Technische Univ. München (Germany)
Korbinian Mechlem, Technische Univ. München (Germany)
Klinikum rechts der Isar der Technischen Univ. München (Germany)
Eva Braig, Technische Univ. München (Germany)
Klinikum rechts der Isar der Technischen Univ. München (Germany)
Stephanie Kulpe, Technische Univ. München (Germany)
Martin Dierolf, Technische Univ. München (Germany)
Benedikt Günther, Technische Univ. München (Germany)
Max-Plank-Institut für Quantenoptik (Germany)
Klaus Achterhold, Technische Univ. München (Germany)
Julia Herzen, Technische Univ. München (Germany)

Bernhard Gleich, Technische Univ. München (Germany)
Ernst Rummeny, Klinikum rechts der Isar der Technischen Univ. München (Germany)
Peter B. Noël, Technische Univ. München (Germany)
Klinikum rechts der Isar der Technischen Univ. München (Germany)
Franz Pfeiffer, Technische Univ. München (Germany)
Klinikum rechts der Isar der Technischen Univ. München (Germany)
Daniela Muenzel, Klinikum rechts der Isar der Technischen Univ. München (Germany)


Published in SPIE Proceedings Vol. 10132:
Medical Imaging 2017: Physics of Medical Imaging
Thomas G. Flohr; Joseph Y. Lo; Taly Gilat Schmidt, Editor(s)

© SPIE. Terms of Use
Back to Top