Share Email Print

Proceedings Paper

Algorithmic processing of intrinsic signals in affixed transmission speckle analysis (ATSA) (Conference Presentation)
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.

Paper Details

Date Published: 19 April 2017
PDF: 1 pages
Proc. SPIE 10063, Dynamics and Fluctuations in Biomedical Photonics XIV, 100630A (19 April 2017); doi: 10.1117/12.2253522
Show Author Affiliations
Michael T. Ghijsen, Univ. of California, Irvine (United States)
Bruce J. Tromberg, Univ. of California, Irvine (United States)

Published in SPIE Proceedings Vol. 10063:
Dynamics and Fluctuations in Biomedical Photonics XIV
Valery V. Tuchin; Kirill V. Larin; Martin J. Leahy; Ruikang K. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top