Share Email Print
cover

Proceedings Paper

Using consumer-grade devices for multi-imager non-contact imaging photoplethysmography
Author(s): Ethan B. Blackford; Justin R. Estepp
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Imaging photoplethysmography is a technique through which the morphology of the blood volume pulse can be obtained through non-contact video recordings of exposed skin with superficial vasculature. The acceptance of such a convenient modality for use in everyday applications may well depend upon the availability of consumer-grade imagers that facilitate ease-of-adoption. Multiple imagers have been used previously in concept demonstrations, showing improvements in quality of the extracted blood volume pulse signal. However, the use of multi-imager sensors requires synchronization of the frame exposures between the individual imagers, a capability that has only recently been available without creating custom solutions. In this work, we consider the use of multiple, commercially-available, synchronous imagers for use in imaging photoplethysmography. A commercially-available solution for adopting multi-imager synchronization was analyzed for 21 stationary, seated participants while ground-truth physiological signals were simultaneously measured. A total of three imagers were used, facilitating a comparison between fused data from all three imagers versus data from the single, central imager in the array. The within-subjects design included analyses of pulse rate and pulse signal-to-noise ratio. Using the fused data from the triple-imager array, mean absolute error in pulse rate measurement was reduced to 3.8 as compared to 7.4 beats per minute with the single imager. While this represents an overall improvement in the multi-imager case, it is also noted that these errors are substantially higher than those obtained in comparable studies. We further discuss these results and their implications for using readily-available commercial imaging solutions for imaging photoplethysmography applications.

Paper Details

Date Published: 17 February 2017
PDF: 9 pages
Proc. SPIE 10072, Optical Diagnostics and Sensing XVII: Toward Point-of-Care Diagnostics, 100720P (17 February 2017); doi: 10.1117/12.2253409
Show Author Affiliations
Ethan B. Blackford, Ball Aerospace & Technologies Corp. (United States)
Justin R. Estepp, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 10072:
Optical Diagnostics and Sensing XVII: Toward Point-of-Care Diagnostics
Gerard L. Coté, Editor(s)

© SPIE. Terms of Use
Back to Top