Share Email Print
cover

Proceedings Paper

Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

Paper Abstract

A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption ~1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

Paper Details

Date Published: 24 April 2017
PDF: 1 pages
Proc. SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 2017, 100642G (24 April 2017); doi: 10.1117/12.2253381
Show Author Affiliations
David S. Li, Univ. of Washington (United States)
Soon Joon Yoon, Univ. of Washington (United States)
Thomas J. Matula, Ctr. for Industrial and Medical Ultrasound, Univ. of Washington (United States)
Matthew O'Donnell, Univ. of Washington (United States)
Lilo D. Pozzo, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 10064:
Photons Plus Ultrasound: Imaging and Sensing 2017
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top