Share Email Print
cover

Proceedings Paper

Use of Gabor filters and deep networks in the segmentation of retinal vessel morphology
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The segmentation of retinal morphology has numerous applications in assessing ophthalmologic and cardiovascular disease pathologies. The early detection of many such conditions is often the most effective method for reducing patient risk. Computer aided segmentation of the vasculature has proven to be a challenge, mainly due to inconsistencies such as noise, variations in hue and brightness that can greatly reduce the quality of fundus images. Accurate fundus and/or retinal vessel maps give rise to longitudinal studies able to utilize multimodal image registration and disease/condition status measurements, as well as applications in surgery preparation and biometrics. This paper further investigates the use of a Convolutional Neural Network as a multi-channel classifier of retinal vessels using the Digital Retinal Images for Vessel Extraction database, a standardized set of fundus images used to gauge the effectiveness of classification algorithms. The CNN has a feed-forward architecture and varies from other published architectures in its combination of: max-pooling, zero-padding, ReLU layers, batch normalization, two dense layers and finally a Softmax activation function. Notably, the use of Adam to optimize training the CNN on retinal fundus images has not been found in prior review. This work builds on prior work of the authors, exploring the use of Gabor filters to boost the accuracy of the system to 0.9478 during post processing. The mean of a series of Gabor filters with varying frequencies and sigma values are applied to the output of the network and used to determine whether a pixel represents a vessel or non-vessel.

Paper Details

Date Published: 16 February 2017
PDF: 7 pages
Proc. SPIE 10068, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, 100680R (16 February 2017); doi: 10.1117/12.2252988
Show Author Affiliations
Henry A. Leopold, Univ. of Waterloo (Canada)
Jeff Orchard, Univ. of Waterloo (Canada)
John Zelek, Univ. of Waterloo (Canada)
Vasudevan Lakshminarayanan, Univ. of Waterloo (Canada)


Published in SPIE Proceedings Vol. 10068:
Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV
Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)

© SPIE. Terms of Use
Back to Top