Share Email Print
cover

Proceedings Paper

Demonstration of UV LED versatility when paired with molded UV transmitting glass optics to produce unique irradiance patterns
Author(s): Brian Jasenak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don’t offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.

Paper Details

Date Published: 16 February 2017
PDF: 11 pages
Proc. SPIE 10124, Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXI, 101240U (16 February 2017); doi: 10.1117/12.2252941
Show Author Affiliations
Brian Jasenak, Kopp Glass, Inc. (United States)


Published in SPIE Proceedings Vol. 10124:
Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXI
Jong Kyu Kim; Michael R. Krames; Li-Wei Tu; Martin Strassburg, Editor(s)

© SPIE. Terms of Use
Back to Top