Share Email Print

Proceedings Paper

New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)
Author(s): Simi A. George
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.4402/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid “mixed” laser glass amplifier – OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

Paper Details

Date Published: 21 April 2017
PDF: 1 pages
Proc. SPIE 10082, Solid State Lasers XXVI: Technology and Devices, 100820X (21 April 2017); doi: 10.1117/12.2252799
Show Author Affiliations
Simi A. George, SCHOTT North America, Inc. (United States)

Published in SPIE Proceedings Vol. 10082:
Solid State Lasers XXVI: Technology and Devices
W. Andrew Clarkson; Ramesh K. Shori, Editor(s)

© SPIE. Terms of Use
Back to Top