Share Email Print
cover

Proceedings Paper

Automated aberration compensation in high numerical aperture systems for arbitrary laser modes (Conference Presentation)
Author(s): Julian Hering; Erik H. Waller; Georg von Freymann
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Since a large number of optical systems and devices are based on differently shaped focal intensity distributions (point-spread-functions, PSF), the PSF’s quality is crucial for the application’s performance. E.g., optical tweezers, optical potentials for trapping of ultracold atoms as well as stimulated-emission-depletion (STED) based microscopy and lithography rely on precisely controlled intensity distributions. However, especially in high numerical aperture (NA) systems, such complex laser modes are easily distorted by aberrations leading to performance losses. Although different approaches addressing phase retrieval algorithms have been recently presented[1–3], fast and automated aberration compensation for a broad variety of complex shaped PSFs in high NA systems is still missing. Here, we report on a Gerchberg-Saxton[4] based algorithm (GSA) for automated aberration correction of arbitrary PSFs, especially for high NA systems. Deviations between the desired target intensity distribution and the three-dimensionally (3D) scanned experimental focal intensity distribution are used to calculate a correction phase pattern. The target phase distribution plus the correction pattern are displayed on a phase-only spatial-light-modulator (SLM). Focused by a high NA objective, experimental 3D scans of several intensity distributions allow for characterization of the algorithms performance: aberrations are reliably identified and compensated within less than 10 iterations. References 1. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. of Microscopy 216(1), 32–48 (2004). 2. A. Jesacher, A. Schwaighofer, S. Frhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007). 3. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010). 4. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35(2), 237–246 (1972).

Paper Details

Date Published: 28 April 2017
PDF: 1 pages
Proc. SPIE 10115, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X, 101150Y (28 April 2017); doi: 10.1117/12.2250929
Show Author Affiliations
Julian Hering, Technische Univ. Kaiserslautern (Germany)
Erik H. Waller, Technische Univ. Kaiserslautern (Germany)
Georg von Freymann, Technische Univ. Kaiserslautern (Germany)
Fraunhofer Institute for Physical Measurement Techniques (IPM) (Germany)


Published in SPIE Proceedings Vol. 10115:
Advanced Fabrication Technologies for Micro/Nano Optics and Photonics X
Georg von Freymann; Winston V. Schoenfeld; Raymond C. Rumpf, Editor(s)

© SPIE. Terms of Use
Back to Top