Share Email Print
cover

Proceedings Paper

Optofluidic time-stretch quantitative phase microscopy for high-throughput label-free single-cell analysis (Conference Presentation)
Author(s): Baoshan Guo; Cheng Lei; Takuro Ito; Yiyue Jiang; Yasuyuki Ozeki; Keisuke Goda

Paper Abstract

The ability to sift through a large heterogeneous population of cells is of paramount importance in a diverse range of biomedical and green applications. Furthermore, the capability of identifying various features of cells in a label-free manner is useful for high-throughput screening. Here we present optofluidic time-stretch quantitative phase microscopy for high-throughput label-free single-cell screening. This method is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch microscope for high-speed imaging with a spatial resolution of ~800 nm at a frame rate of ~10 million frames per second, and a digital image processor for image-based characterization, classification, and statistical analysis of biological cells such as blood cells and microalgae. It provides both the opacity (amplitude) and thickness (phase) content of every cell at a high throughput of ~10,000 cells per second. This method is expected to be effective for a diverse range of applications such as cancer detection and biofuel production.

Paper Details

Date Published: 24 April 2017
PDF: 1 pages
Proc. SPIE 10074, Quantitative Phase Imaging III, 1007402 (24 April 2017); doi: 10.1117/12.2250824
Show Author Affiliations
Baoshan Guo, The Univ. of Tokyo (Japan)
Cheng Lei, The Univ. of Tokyo (Japan)
Takuro Ito, Japan Science and Technology Agency (Japan)
Yiyue Jiang, The Univ. of Tokyo (Japan)
Yasuyuki Ozeki, The Univ. of Tokyo (Japan)
Keisuke Goda, The Univ. of Tokyo (Japan)


Published in SPIE Proceedings Vol. 10074:
Quantitative Phase Imaging III
Gabriel Popescu; YongKeun Park, Editor(s)

© SPIE. Terms of Use
Back to Top