Share Email Print
cover

Proceedings Paper

Low-voltage binary operation of liquid-crystal Fresnel lens with surface relief structure
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We demonstrate a liquid crystal Fresnel lens (LCFL) with a surface relief structure which has the binary switching property and the merit of low voltage driving. The surface relief structure is fabricated by photopolymerization of a polymer-precursor initiated by ultra-violet light onto a solid cylindrical Fresnel lens with desired optical power. A liquid crystal (LC) layer is sandwiched between a pair of polymer Fresnel lens deposited with planar alignment layers with orthogonal rubbing directions. The ordinary refractive index of LC is chose to be close to the refractive index of the polymer. At voltage-off state, when the polarization of light is parallel to the long axis of LC molecules, the refractive index mismatch of liquid crystals and polymer Fresnel lens enables the focusing of LCFL. At voltage-on state, the LCFL is a slab with homogenous refractive index because of the index matching between LC and polymer. With the benefit of twisted nematic structure, the voltage requirement is significantly low (~6V) for LCFL. The low-voltage binary beam shaping of laser and magnifying lens function using LCFL are experimentally demonstrated in this paper. Polarization-independent LCFL is achievable with a double-layered approach.

Paper Details

Date Published: 15 February 2017
PDF: 6 pages
Proc. SPIE 10125, Emerging Liquid Crystal Technologies XII, 101250X (15 February 2017); doi: 10.1117/12.2249973
Show Author Affiliations
Kai-Han Chang, Kent State Univ. (United States)
Dong Wang, Kent State Univ. (United States)
Liang-Chy Chien, Kent State Univ. (United States)


Published in SPIE Proceedings Vol. 10125:
Emerging Liquid Crystal Technologies XII
Liang-Chy Chien, Editor(s)

© SPIE. Terms of Use
Back to Top