Share Email Print
cover

Proceedings Paper

Sprayable enzyme-activatable fluorescent probes: kinetic mapping using dynamic fluorescence imaging can help detecting tiny cancer foci (Conference Presentation)
Author(s): Hisataka Kobayashi

Paper Abstract

Optical fluorescence-guided imaging is increasingly used to guide surgery and endoscopic procedures. Sprayable enzyme-activatable probes are particularly useful because of high target-to-background ratios that increase sensitivity for tiny cancer foci. However, green fluorescent activatable probes suffers from interference from autofluorescence found in biological tissue. Dynamic imaging followed by the kinetic analysis could be detected local enzyme activity and used to differentiate specific fluorescence arising from an activated probe in a tumor from autofluorescence in background tissues especially when low concentrations of the dye are applied to detect tiny cancer foci. Serial fluorescence imaging was performed using various concentrations of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) which was sprayed on the peritoneal surface with tiny implants of SHIN3-dsRed ovarian cancer tumors. Temporal differences in signal between specific green fluorescence in cancer foci and non-specific autofluorescence in background tissue was measured and processed into three kinetic maps reflecting maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC), respectively. Especially at lower concentrations, kinetic maps derived from dynamic fluorescence imaging were clearly superior to unprocessed images for detection small cancer foci.

Paper Details

Date Published: 19 April 2017
PDF: 1 pages
Proc. SPIE 10049, Molecular-Guided Surgery: Molecules, Devices, and Applications III, 100490O (19 April 2017); doi: 10.1117/12.2249934
Show Author Affiliations
Hisataka Kobayashi, National Cancer Institute (United States)


Published in SPIE Proceedings Vol. 10049:
Molecular-Guided Surgery: Molecules, Devices, and Applications III
Brian W. Pogue; Sylvain Gioux, Editor(s)

© SPIE. Terms of Use
Back to Top