Share Email Print
cover

Proceedings Paper

Multiple scattering of polarized light in uniaxial turbid media with arbitrarily oriented linear birefringence
Author(s): S. Otsuki
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The effective scattering Mueller matrices obtained by the simulation were simplified to the reduced matrices and factorized using the Lu-Chipman polar decomposition, which afforded the polarization parameters in two dimensions. In general, the scalar retardance around the illumination point of a pencil beam shows a broad azimuthal dependence with an offset. Photons may behave quite differently under the birefringence according to their polarization state. In contrast, when the birefringence is oriented along the y axis in the plane parallel to the surface (x-y) plane, for example, the azimuthal dependence of the scalar retardance shows clear maxima along the x and y axes and sharp valleys between the maxima. Photons propagating in the medium probably experience the retardance in nearly the same way, when they are polarized linearly and circularly. Moreover, the polarization parameters generally become nonsymmetric with respect to the plane perpendicular to both the x-y plane and the plane containing the birefringence axis, which suggests that the pathway of the lateral propagation of photons from the illumination point to the surrounding is slightly oblique upward relative to the x-y plane.

Paper Details

Date Published: 15 February 2017
PDF: 8 pages
Proc. SPIE 10062, Optical Interactions with Tissue and Cells XXVIII, 1006212 (15 February 2017); doi: 10.1117/12.2249590
Show Author Affiliations
S. Otsuki, National Institute of Advanced Industrial Science and Technology (Japan)


Published in SPIE Proceedings Vol. 10062:
Optical Interactions with Tissue and Cells XXVIII
E. Duco Jansen; Hope Thomas Beier, Editor(s)

© SPIE. Terms of Use
Back to Top