Share Email Print
cover

Proceedings Paper

Overview of recent results from the Beam Energy Scan program in the STAR experiment
Author(s): Andrzej Lipiec
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

It is believed, that shortly after the Big Bang the Universe existed in the state of the Quark Gluon Plasma, where quarks and gluons act as quasi-free particles. During relativistic heavy ion collisions this state of matter can be reproduced. Quantum Chromo-Dynamics (QCD) calculations show possible existence of the critical point and the 1st order phase transition between hadron gas and QGP. The Relativistic Heavy Ion Collider’s (RHIC) program called Beam Energy Scan (BES) was developed for experimental verification of above QCD predictions. Within this program the Solenoidal Tracker At RHIC (STAR) experiment gathered data from gold-gold collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV. This data are analysed by STAR Collaboration in search for answers to questions concerning the nuclear matter phases, namely: what is the collision energy for the onset of the QGP formation? What is the nature of a phase transition between QGP and hadron gas? Is there a critical point and if yes, where is it situated? In this proceedings a few of the latest STAR results that address these questions are presented.

Paper Details

Date Published: 28 September 2016
PDF: 7 pages
Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100313S (28 September 2016); doi: 10.1117/12.2249312
Show Author Affiliations
Andrzej Lipiec, Warsaw Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 10031:
Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016
Ryszard S. Romaniuk, Editor(s)

© SPIE. Terms of Use
Back to Top