Share Email Print
cover

Proceedings Paper

A zero-crossing point locking system in the time-of-flight measurement of femtosecond pulsed laser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The background and principle of zero-crossing point locking technology are introduced in this paper. An experimental locking system is designed to realize fast locking of zero-crossing point, and the results of locking is studied by analyzing zero-crossing point locking signal. In the distance measurement of femtosecond pulsed laser, a crystal produces the balanced cross-correlation (BCC) signal, which signifies the time offset of the target pulses with respect to the reference pulses. By continuously pulling this signal to zero-crossing point, the locking system provides a closed loop control process, which ensures the stability of the zero-crossing point and the precision of measurement. This locking system is mainly made up by five sections. As a core section of system, P-I circuit can optimize the locking state by changing parameters. A frequency counter referenced to the rubidium atomic clock is used to measure the pulse repetition rate with a stability of 10-12 in the sampling rate of 10s in 24 hours, which is helpful to analyze the measurement precision. In the experiment, the result of zero-crossing point lock can reach to 15mV, in other words, the range of amplitude variation can be reduced to less than 15mV after locking. With the repetition rate data evaluated, the jitter of the pulse repetition rate is within 25Hz in the sampling time of 15s after locking the zero-crossing point. It is proved that the locking system designed has a high practical value in the distance and vibration measurement of femtosecond pulsed laser.

Paper Details

Date Published: 19 October 2016
PDF: 9 pages
Proc. SPIE 10155, Optical Measurement Technology and Instrumentation, 101551T (19 October 2016); doi: 10.1117/12.2246734
Show Author Affiliations
Shuyi Li, Aviation Industry Corp. of China (China)
Chunbo Zhao, Aviation Industry Corp. of China (China)
Tengfei Wu, Aviation Industry Corp. of China (China)
Jibo Han, Aviation Industry Corp. of China (China)


Published in SPIE Proceedings Vol. 10155:
Optical Measurement Technology and Instrumentation
Sen Han; JiuBin Tan, Editor(s)

© SPIE. Terms of Use
Back to Top