Share Email Print
cover

Proceedings Paper

Design and research for biosensing THz microfluidic chips
Author(s): Ning Fan; Bo Su; Cong Zhang; Cunlin Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Many Biomolecules vibration frequencies are in terahertz (0.1THz-10THz) frequency range, so terahertz (THz) technology is an essential tool for detecting biological molecules. However, due to terahertz strongly absorbed by water, it is difficult to detect these molecules for biological and chemical liquid samples. Therefore, we present a novel detection method by combining terahertz technology with microfluidic technology. The strong absorption of water is effectively overcome by controlling the length that terahertz passes through liquid samples. What’s more, a higher signal to noise ratio is obtained through using less samples. In this paper, we designed a THz microfluidic chip that is easy to be fabricated by using the materials of Zeonor and polydimethylsiloxane (PDMS). Using terahertz time-domainspectroscopy (THz-TDS) system, we find that the chip has a high transmittance above 80% in the range from 0.2 THz to 2.6 THz. Then the THz spectra of deionized water and different kinds of solutions with different concentrations in the microfluidic chip were measured, respectively. In our research, it is found that different kinds of solutions have different transmission coefficients for THz. In addition, the THz transmission and absorption spectrum changes with the concentration of the same kind of solution.

Paper Details

Date Published: 3 November 2016
PDF: 6 pages
Proc. SPIE 10030, Infrared, Millimeter-Wave, and Terahertz Technologies IV, 100302F (3 November 2016); doi: 10.1117/12.2246354
Show Author Affiliations
Ning Fan, Capital Normal Univ. (China)
Bo Su, Capital Normal Univ. (China)
Cong Zhang, Capital Normal Univ. (China)
Cunlin Zhang, Capital Normal Univ. (China)


Published in SPIE Proceedings Vol. 10030:
Infrared, Millimeter-Wave, and Terahertz Technologies IV
Cunlin Zhang; Xi-Cheng Zhang; Masahiko Tani, Editor(s)

© SPIE. Terms of Use
Back to Top