Share Email Print
cover

Proceedings Paper

Interstitial optical parameter quantification of turbid medium based on CW radiance measurements
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

CW radiance measurements examine the light intensity at a single source-detector location from different detection directions to recover absorption coefficient and reduced scattering coefficient of the turbid medium which is important in treatment planning of minimally invasive laser therapies. In this paper, P9 approximation for radiance is used as the forward model for fitting by considering the balance between computational time and the correctness of the forward model at low albedo and small source detector separation (SDS). By fitting P9 approximation for radiance to the angular radiance Monte Carlo (MC) simulations used as the angular radiance measurements, optical parameters are recovered over a wide range of reduced albedo between 0.69 and 0.99 at small SDS 2mm. The recovery errors of absorption coefficient and reduced scattering coefficient are less than 11.96% and 2.63%, respectively. The effects of the maximum angle used for fitting on optical parameter recovery have been further studied. The results show that the recovery errors of absorption coefficient and reduced scattering coefficient are less than 12% and 3% respectively when the maximum angle is greater than 70 degree.

Paper Details

Date Published: 31 October 2016
PDF: 6 pages
Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII, 1002436 (31 October 2016); doi: 10.1117/12.2246053
Show Author Affiliations
Lingling Liu, Tianjin Univ. (China)
Limin Zhang, Tianjin Univ. (China)
Tianjin Key Lab. of Biomedical Detecting Techniques and Instruments (China)
Feng Gao, Tianjin Univ. (China)
Tianjin Key Lab. of Biomedical Detecting Techniques and Instruments (China)
Huijuan Zhao, Tianjin Univ. (China)
Tianjin Key Lab. of Biomedical Detecting Techniques and Instruments (China)


Published in SPIE Proceedings Vol. 10024:
Optics in Health Care and Biomedical Optics VII
Qingming Luo; Xingde Li; Ying Gu; Yuguo Tang, Editor(s)

© SPIE. Terms of Use
Back to Top