Share Email Print
cover

Proceedings Paper

All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

Paper Details

Date Published: 31 October 2016
PDF: 7 pages
Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII, 100240H (31 October 2016); doi: 10.1117/12.2245952
Show Author Affiliations
Zhongjiang Chen, South China Normal Univ. (China)
Sihua Yang, South China Normal Univ. (China)
Da Xing, South China Normal Univ. (China)


Published in SPIE Proceedings Vol. 10024:
Optics in Health Care and Biomedical Optics VII
Qingming Luo; Xingde Li; Ying Gu; Yuguo Tang, Editor(s)

© SPIE. Terms of Use
Back to Top