Share Email Print
cover

Proceedings Paper

Research of aerial imaging spectrometer data acquisition technology based on USB 3.0
Author(s): Junze Huang; Yueming Wang; Daogang He; Yanan Yu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

Paper Details

Date Published: 4 November 2016
PDF: 8 pages
Proc. SPIE 10026, Real-time Photonic Measurements, Data Management, and Processing II, 100260S (4 November 2016); doi: 10.1117/12.2245834
Show Author Affiliations
Junze Huang, Shanghai Univ. (China)
Yueming Wang, Shanghai Institute of Technical Physics (China)
Daogang He, Shanghai Institute of Technical Physics (China)
Yanan Yu, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 10026:
Real-time Photonic Measurements, Data Management, and Processing II
Ming Li; Bahram Jalali; Keisuke Goda; Kevin K. Tsia, Editor(s)

© SPIE. Terms of Use
Back to Top