Share Email Print
cover

Proceedings Paper

The optimum measurement precision evaluation for blood components using near-infrared spectra on 1000-2500 nm
Author(s): Ziyang Zhang; Di Sun; Tongshuai Han; Chao Guo; Jin Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell’s size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.

Paper Details

Date Published: 31 October 2016
PDF: 7 pages
Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII, 100242H (31 October 2016); doi: 10.1117/12.2245716
Show Author Affiliations
Ziyang Zhang, Tianjin Univ. (China)
Di Sun, Tianjin Univ. (China)
Tongshuai Han, Tianjin Univ. (China)
Chao Guo, Tianjin Univ. (China)
Jin Liu, Tianjin Univ. (China)


Published in SPIE Proceedings Vol. 10024:
Optics in Health Care and Biomedical Optics VII
Qingming Luo; Xingde Li; Ying Gu; Yuguo Tang, Editor(s)

© SPIE. Terms of Use
Back to Top