Share Email Print
cover

Proceedings Paper

Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging
Author(s): Xiaoqin Zhu; Chenxi Liao; Zhenyu Wang; Shuangmu Zhuo; Wenge Liu; Jianxin Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

Paper Details

Date Published: 31 October 2016
PDF: 6 pages
Proc. SPIE 10024, Optics in Health Care and Biomedical Optics VII, 1002424 (31 October 2016); doi: 10.1117/12.2245516
Show Author Affiliations
Xiaoqin Zhu, Fujian Normal Univ. (China)
Chenxi Liao, Fujian Normal Univ. (China)
Zhenyu Wang, Fujian Medical Univ. (China)
Shuangmu Zhuo, Fujian Normal Univ. (China)
Wenge Liu, Fujian Medical Univ. (China)
Jianxin Chen, Fujian Normal Univ. (China)


Published in SPIE Proceedings Vol. 10024:
Optics in Health Care and Biomedical Optics VII
Qingming Luo; Xingde Li; Ying Gu; Yuguo Tang, Editor(s)

© SPIE. Terms of Use
Back to Top