Share Email Print
cover

Proceedings Paper

Optical design of a scalable imaging system with compact configuration and high fidelity
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Optical design of a novel optical imaging system is presented. It can overcome the scaling of the aberrations by dividing the imaging task between a single objective lens that achieves a partially corrected intermediate image on a spherical surface, and an array of micro-lens, each of which relays a small portion of the intermediate image to its respective sensor, correcting the residual aberrations. The system is aimed for obtaining large field-of-view without deteriorating its resolution, of which traditionally designed optical imaging systems have met great difficult. This progress not only breaks through the traditional restrictions, but also allows a wider application for optical imaging systems. Firstly, proper configuration, which satisfies both the requirement of compactness and high performance, is determined according to the working principle of the novel system and through the research of the design idea in this paper. Then, a design example is presented with the field-of-view 50°and its resolution 0.2mrad, which remains as the field-of-view scales. But the optimized scalable system is of close packed structure and its dimension is less than 300mm along the ray incidence.

Paper Details

Date Published: 25 October 2016
PDF: 7 pages
Proc. SPIE 9685, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials, 96850U (25 October 2016); doi: 10.1117/12.2244301
Show Author Affiliations
Yiqun Ji, Soochow Univ. (China)
Yuheng Chen, Soochow Univ. (China)
Jiankang Zhou, Soochow Univ. (China)
Xinhua Chen, Soochow Univ. (China)


Published in SPIE Proceedings Vol. 9685:
8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials
Xiangang Luo; Tianchun Ye; Tingwen Xin; Song Hu; Minghui Hong; Min Gu, Editor(s)

© SPIE. Terms of Use
Back to Top