Share Email Print
cover

Proceedings Paper

Stable and tunable single frequency mid-infrared optical parametric oscillator
Author(s): Qian Wang; Xin Wang; Zhuo Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have demonstrated a single frequency mid-infrared optical parametric oscillator pumped by a high power continuous wave single frequency fiber amplifier. The pump power was 15W and the corresponding extraction efficiency was 56%, which is close to the theoretical calculated maximum efficiency of 70% under Gaussian beam assumption. In the experiments the volume Bragg grating was 14.9 mm long with the diffractive efficiency of 99.5% at 1550.5 nm. The diffractive spectral linewidth was 0.27 nm. When the working temperature of the PPLN crystal was 51.5°C and the poling period was 30.5μm a stable idler radiation at 3400 nm was generated. To obtain single frequency operation, an uncoated YAG inter-cavity etalon with 5 mm thickness was inserted into the folded cavity. Stable single frequency operation was obtained with the spectral linewidth of 37.5 MHz and the output power of 2.2 W. The central wavelength stability was better than 520 MHz over 1 hour, which was limited by the resolution of the spectrometer. By changing the angle of the YAG etalon the central wavelength of the idler was varied in the range of 0.24 nm.

Paper Details

Date Published: 19 October 2016
PDF: 13 pages
Proc. SPIE 10152, High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, 1015209 (19 October 2016); doi: 10.1117/12.2243986
Show Author Affiliations
Qian Wang, Beijing Institute of Technology (China)
Xin Wang, Beijing Institute of Technology (China)
Zhuo Li, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 10152:
High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration
Lijun Wang; Zhiping Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top