Share Email Print
cover

Proceedings Paper

Numerical analysis of the temperature field in silicon avalanche photodiode by millisecond laser irradiation
Author(s): Di Wang; Guangyong Jin; Zhi Wei; Hongyu Zhao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent years, millisecond laser become a research hotspot. Avalanche photodiode (APD) based on silicon structure has excellent characteristics such as low noise and high-sensitivity. It is key components in receives for long-haul high-bit-rate optical communication system. The failure mechanism of silicon APD remains quite unknown, although some silicon p-i-n photodiode failure modes have been speculated. The COMSOL Multiphysics finite element analysis software was utilized in this paper. And the 2D model, which based on heat conduction equation, was established to simulate the temperature field of the silicon avalanche photodiode irradiated by millisecond laser. The model presented in the following section is a work which considers only melting of silicon by a millisecond laser pulse. The temperature dependences of material properties are taken into account, which has a great influence on the temperature fields indicated by the numerical results. The pulsed laser-induced transient temperature fields in silicon avalanche photodiode are obtained, which will be useful in the research on the mechanism of interactions between millisecond laser and photodiode. The evolution of temperature at the central point of the top surface, the temperature distribution along the radial direction in the end of laser irradiation and the temperature distribution along the axial direction in the end of laser irradiation were considered. Meanwhile, the fluence threshold value was obtained through the model. The conclusions had a reference value for revealing the mechanism of interactions between millisecond laser and the silicon avalanche photodiode.

Paper Details

Date Published: 19 October 2016
PDF: 6 pages
Proc. SPIE 10152, High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration, 1015204 (19 October 2016); doi: 10.1117/12.2243629
Show Author Affiliations
Di Wang, Changchun Univ. of Science and Technology (China)
Guangyong Jin, Changchun Univ. of Science and Technology (China)
Zhi Wei, Changchun Univ. of Science and Technology (China)
Hongyu Zhao, Changchun Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 10152:
High Power Lasers, High Energy Lasers, and Silicon-based Photonic Integration
Lijun Wang; Zhiping Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top