Share Email Print

Proceedings Paper

The design of multilayer dielectric grating for laser frequency selection
Author(s): Jian Yu; Chaoming Li; Xinrong Chen; Xiaoyang Li; Hang Zha; Jianhong Wu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The metal grating has been widely used in the tunable laser to select frequency, the diffraction efficiency and damage threshold of the gratings are very important to the performance of high power tunable laser. However, because of the light absorption of metal material, the damage threshold of the metal grating is usually not high especially at short wavelength, it is hard to meet the requirements of high power laser. This paper presents the laser frequency selection with multilayer dielectric grating, in this method, the high diffraction efficiency is ensured, and the damage threshold of the grating is improved. Based on the rigorous coupled wave (RCWA) theory, the model of multi-layer dielectric film grating is established, and the theoretical design for the 473nm laser is given. After a series of optimal design, the following results are obtained. HfO2 and SiO2 are selected as multi-layer material, and the multi-layer structure is S(HL)^12HTA .The groove density is 3875 lines/mm. The profile of grating grooves is rectangular .The duty cycle of surface relief structure is between 0.31-0.35, the groove depth is between 270-310nm, the sum of residual thickness and groove depth is between 310-320nm.The -1st diffraction efficiency of the grating is over 98% (TE polarization) at the Littrow angle (66.4 degrees).The diffraction efficiency is higher than that of ordinary metal grating. At the same time, the electric field distribution of the grating is optimized, the peak electric field is avoid located at surface relief structure, and the laser induced damage threshold can be improved.

Paper Details

Date Published: 28 October 2016
PDF: 7 pages
Proc. SPIE 9683, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 968310 (28 October 2016); doi: 10.1117/12.2243413
Show Author Affiliations
Jian Yu, Soochow Univ. (China)
Chaoming Li, Soochow Univ. (China)
Xinrong Chen, Soochow Univ. (China)
Xiaoyang Li, Soochow Univ. (China)
Hang Zha, Soochow Univ. (China)
Jianhong Wu, Soochow Univ. (China)

Published in SPIE Proceedings Vol. 9683:
8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
Wenhan Jiang; Li Yang; Oltmann Riemer; Shengyi Li; Yongjian Wan, Editor(s)

© SPIE. Terms of Use
Back to Top