Share Email Print

Proceedings Paper

Cooperative entangled effects between the cavity mode components of Raman process
Author(s): Nicolae A. Enaki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The cooperative excitation and absorption of light into three cavity modes (pump, Stokes and anti-Stokes), stimulated by excited radiators, is studied as bound entangled states of the photon subsystem. The three modes collective Roman emission and its connection with entangled state is defined introducing the cooperative description between photons of cavity modes. In the case, when the scattering rates in the Stokes and anti-Stokes modes coincide, the SU(2) and SU(1,1) symmetries are applied for a simple description of these cooperative processes. The possibilities to realize this effect in the free space is proposed, replacing the cavity modes with dipole active excited atoms in tow-quantum interaction with dipole-forbidden transitions of D atom. The statistical properties and detection method are proposed using the information entropy and atomic correlation functions.

Paper Details

Date Published: 14 December 2016
PDF: 16 pages
Proc. SPIE 10010, Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII, 100100K (14 December 2016); doi: 10.1117/12.2242982
Show Author Affiliations
Nicolae A. Enaki, Institute of Applied Physics (Moldova)

Published in SPIE Proceedings Vol. 10010:
Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies VIII
Marian Vladescu; Cornel T. Panait; Razvan Tamas; George Caruntu; Ionica Cristea, Editor(s)

© SPIE. Terms of Use
Back to Top