Share Email Print

Proceedings Paper

Development of a millimeter-wave sensor for environmental monitoring
Author(s): Nachappa Gopalsami; Sasan Bakhtiari; Apostolos C. Raptis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A millimeter-wave (mm-wave) sensor in the frequency range of 225-315 GHz is being developed for continuous emission monitoring for airborne effluents from industrial sites with applicability to environmental compliance monitoring and process control. Detection of chemical species is based on measuring the molecular rotational energy transitions at mm- wave frequencies. The mm-wave technique offers better transmission properties than do optics in harsh industrial environemnts such as those with smoke, dust, aerosols, and steam, as well as in adverse atmospheric conditions. Laboratory million-meter with this technology. Proof of principle of the open-path system has been tested by releasing and detecting innocuous chemicals in the open air. The system uses a monostatic radar configuration with transmitter and receiver on one side of the plume to be measured an a corner cube on the other side. A wide-band swept-frequency mm-wave signal is transmitted through the plume, and the return signal from the corner cube is detected by a hot-electron-bolometer. Aborption spectra of the plume gases are measured by comparing the return signal processing technique based on deconvolution, we have shown a high specificity of detection for resolving individual chemicals from a mixture. This technology is applicable for real-time measurement of a suite of airborne gases and vapors emitted from vents and stacks of process industries. A prototype sensor is being developed for wide-area monitoring of industrial sites and in-place monitoring of stack gases.

Paper Details

Date Published: 13 October 1995
PDF: 12 pages
Proc. SPIE 2558, Millimeter and Submillimeter Waves II, (13 October 1995); doi: 10.1117/12.224235
Show Author Affiliations
Nachappa Gopalsami, Argonne National Lab. (United States)
Sasan Bakhtiari, Argonne National Lab. (United States)
Apostolos C. Raptis, Argonne National Lab. (United States)

Published in SPIE Proceedings Vol. 2558:
Millimeter and Submillimeter Waves II
Mohammed N. Afsar, Editor(s)

© SPIE. Terms of Use
Back to Top