Share Email Print
cover

Proceedings Paper

Detection of load application onto an optical fiber through changes in speckle patterns in an output light spot
Author(s): Makoto Hasegawa; Ryo Takeda; Yuki Fujioka
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For the purpose of investigating possibilities of utilizing, for sensing application, changes in speckle patterns to be observed in an output light spot from an optical fiber due to external disturbance, a certain level of load was applied onto an optical fiber through which laser beams emitted from a laser diode were propagating, and changes in the speckle patterns in the output light spot were investigated. In order to realize effective load application onto the optical fiber, a load application section was provided in which several ridges were intentionally provided onto opposite flat plates. A jacket-covered communication-grade multi-mode glass optical fiber was placed in the load application section so that corrugated bending of the fiber was intentionally induced via load application due to the ridges. A PV cell panel was irradiated with the output light spot from the optical fiber containing the speckle patterns therein. When weights were placed in the load application section, an output voltage from the PV cell panel was changed, indicating that the load application onto the optical fiber can be detected with this detection setup. Removal of the once-placed weights was also detected via changes in the PV cell panel output. Then, the load application onto the optical fiber and its removal was successfully detected via turn-on/off operations of an LED which was controlled in accordance with the changes in the output voltage level from the PV cell panel, in other words, through the changes in the speckle patterns.

Paper Details

Date Published: 25 October 2016
PDF: 7 pages
Proc. SPIE 9685, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials, 96850C (25 October 2016); doi: 10.1117/12.2241959
Show Author Affiliations
Makoto Hasegawa, Chitose Institute of Science and Technology (Japan)
Ryo Takeda, Chitose Institute of Science and Technology (Japan)
Yuki Fujioka, Chitose Institute of Science and Technology (Japan)


Published in SPIE Proceedings Vol. 9685:
8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials
Xiangang Luo; Tianchun Ye; Tingwen Xin; Song Hu; Minghui Hong; Min Gu, Editor(s)

© SPIE. Terms of Use
Back to Top