Share Email Print
cover

Proceedings Paper

Explicit inverse radiative transfer algorithm for estimating embedded sources from external radiance measurements
Author(s): Lydia Katryn Sundman; Norman J. McCormick
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An explicit inverse radiative transfer algorithm has been developed to estimate the spatial distribution of a radiant energy source, embedded within a homogeneous plane-parallel medium that can both absorb and scatter light, from measurements of the radiance at its boundaries. The algorithm can be used with fluorescent sources for applications in a variety of fields such as medical imaging and ocean optics. Since the source estimation is done explicitly this algorithm could be used as a starting condition for iterative schemes. The algorithm is intended for use with a beam-expanded laser normally-incident on a target possessing a flat surface, exciting fluorescence at a different wavelength. The algorithm requires that the angle- dependent radiance distribution be measured over incident and outward directions at both boundaries of a slab and that the optical properties of the medium are known a priori. General boundary conditions as well as anisotropic sources can be treated. The algorithm is presented along with some numerical results for a variety of source distributions with a medium modeled as tissue. The results suggest that this algorithm provides a promising way to explicitly estimate the spatial distribution of an embedded source in a participating medium.

Paper Details

Date Published: 9 October 1995
PDF: 9 pages
Proc. SPIE 2570, Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, (9 October 1995); doi: 10.1117/12.224185
Show Author Affiliations
Lydia Katryn Sundman, Univ. of Washington (United States)
Norman J. McCormick, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 2570:
Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications
Randall Locke Barbour; Mark J. Carvlin; Michael A. Fiddy, Editor(s)

© SPIE. Terms of Use
Back to Top