Share Email Print
cover

Proceedings Paper

Resolution studies in diffusion tomography
Author(s): Thomas R. Lucas; Michael V. Klibanov; Robert M. Frank
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In these resolution studies, a sophisticated version of the finite element method was used to model the time evolution of a laser pulse within a simulated medium. An array of 'detectors', placed in the medium, were used to measure the pulse intensity at a discrete set of points. As we will show in this report, the 'detectors' were able to resolve distortions in the pulse owing to two 1 mm diameter inclusions embedded in this otherwise homogeneous medium and separated by as little as 1 mm. Thus, the data from these detectors could, in principle, be employed by an algorithm designed to solve the inverse problem: the imaging, at 1 mm resolution, of inclusions based upon data from detectors placed, or surrounding, the medium.

Paper Details

Date Published: 9 October 1995
PDF: 12 pages
Proc. SPIE 2570, Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications, (9 October 1995); doi: 10.1117/12.224162
Show Author Affiliations
Thomas R. Lucas, Univ. of North Carolina/Charlotte (United States)
Michael V. Klibanov, Univ. of North Carolina/Charlotte (United States)
Robert M. Frank, Univ. of North Carolina/Charlotte (United States)


Published in SPIE Proceedings Vol. 2570:
Experimental and Numerical Methods for Solving Ill-Posed Inverse Problems: Medical and Nonmedical Applications
Randall Locke Barbour; Mark J. Carvlin; Michael A. Fiddy, Editor(s)

© SPIE. Terms of Use
Back to Top