Share Email Print
cover

Proceedings Paper

Continuous evapotranspiration monitoring and water stress at watershed scale in a Mediterranean oak savanna
Author(s): E. Carpintero; M. P. González Dugo; C. Hain; H. Nieto; F. Gao; A. Andreu; W. P. Kustas; M. C. Anderson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The regular monitoring of the evapotranspiration rates and their links with vegetation conditions and soil moisture may support management and hydrological planning leading to reduce the economic and environmental vulnerability of complex water-controlled Mediterranean ecosystems. In this work, the monitoring of water use over a basin with a predominant oak savanna (known in Spain as dehesa) was conducted for two years, 2013 and 2014, monitoring ET at both fine spatial and temporal resolution in different seasons.

A global 5 km daily ET product, developed with the ALEXI model and MODIS day-night temperature difference, was used as starting point. Flux estimations with higher spatial resolutions were obtained with the associated flux disaggregation scheme, DisALEXI, using surface temperature data from the polar orbiting satellites MODIS (1 Km, daily) and Landsat 7/8 (60-120m and sharpened to 30m, 16 days) and the previously estimated coarse resolution fluxes. The results achieved supported the ability of this scheme to accurately estimate daytime-integrated energy fluxes over this system, using input data with different spatio-temporal resolution and without the need for ground observations. Daily ET series at 30 m spatial resolution, generated using STARFM fusion technique, has provided a significant improvement in spatial heterogeneity assessment of the ET series, with RMSE values of 0.56 and 0.68 mm/day for each year, representing an enhancement with respect to interpolated Landsat series. In summary, this approach was demostrated to be robust and operative to map ET at watershed scale with a suitable spatial and temporal resolution for applications over the dehesa ecosystem.

Paper Details

Date Published: 25 October 2016
PDF: 17 pages
Proc. SPIE 9998, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, 99980N (25 October 2016); doi: 10.1117/12.2241521
Show Author Affiliations
E. Carpintero, IFAPA (Spain)
M. P. González Dugo, IFAPA (Spain)
C. Hain, Univ. of Maryland, College Park (United States)
H. Nieto, Institute for Sustainable Agriculture (Spain)
F. Gao, Hydrology and Remote Sensing Lab. (United States)
A. Andreu, United Nations Univ.-Flores (Germany)
W. P. Kustas, Hydrology and Remote Sensing Lab. (United States)
M. C. Anderson, Hydrology and Remote Sensing Lab. (United States)


Published in SPIE Proceedings Vol. 9998:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top