Share Email Print
cover

Proceedings Paper

Concept for an airborne real-time ISR system with multi-sensor 3D data acquisition
Author(s): Laura Haraké; Hendrik Schilling; Christian Blohm; Markus Hillemann; Andreas Lenz; Merlin Becker; Göksu Keskin; Wolfgang Middelmann
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In modern aerial Intelligence, Surveillance and Reconnaissance operations, precise 3D information becomes inevitable for increased situation awareness. In particular, object geometries represented by texturized digital surface models constitute an alternative to a pure evaluation of radiometric measurements. Besides the 3D data's level of detail aspect, its availability is time-relevant in order to make quick decisions.

Expanding the concept of our preceding remote sensing platform developed together with OHB System AG and Geosystems GmbH, in this paper we present an airborne multi-sensor system based on a motor glider equipped with two wing pods; one carries the sensors, whereas the second pod downlinks sensor data to a connected ground control station by using the Aerial Reconnaissance Data System of OHB. An uplink is created to receive remote commands from the manned mobile ground control station, which on its part processes and evaluates incoming sensor data. The system allows the integration of efficient image processing and machine learning algorithms.

In this work, we introduce a near real-time approach for the acquisition of a texturized 3D data model with the help of an airborne laser scanner and four high-resolution multi-spectral (RGB, near-infrared) cameras. Image sequences from nadir and off-nadir cameras permit to generate dense point clouds and to texturize also facades of buildings. The ground control station distributes processed 3D data over a linked geoinformation system with web capabilities to off-site decision-makers. As the accurate acquisition of sensor data requires boresight calibrated sensors, we additionally examine the first steps of a camera calibration workflow.

Paper Details

Date Published: 21 October 2016
PDF: 9 pages
Proc. SPIE 9987, Electro-Optical and Infrared Systems: Technology and Applications XIII, 998709 (21 October 2016); doi: 10.1117/12.2241051
Show Author Affiliations
Laura Haraké, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Hendrik Schilling, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Christian Blohm, OHB-System AG (Germany)
Markus Hillemann, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Andreas Lenz, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Merlin Becker, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Göksu Keskin, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)
Wolfgang Middelmann, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung (Germany)


Published in SPIE Proceedings Vol. 9987:
Electro-Optical and Infrared Systems: Technology and Applications XIII
David A. Huckridge; Reinhard Ebert; Stephen T. Lee, Editor(s)

© SPIE. Terms of Use
Back to Top