Share Email Print

Proceedings Paper

Photobiodegradation of chlorinated water pollutants by a combined TiO2-polyaniline-enzyme catalytic system
Author(s): Luigi Campanella; G. Crescentini; S. Militerno
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The removal of xenobiotic compounds, such as chlorophenols and pesticides, from municipal and industrial wastewaters is an important task because of the toxicity and the tendency to bioaccumulation of these compounds. Among the several methods proposed, photodegradation catalyzed by suspended inorganic semiconductors (i.e. TiO2) has lately received wide attention because this process is fast, leads to non-toxic final products and shows a high degradation efficiency. In this work, the results obtained in the photodegradation of monochlorophenols using a new catalyst, made of TiO2 and polyaniline both immobilized on a polyvinylchloride (PVC) membrane, in presence (and in absence) of an enzyme are presented. Different enzymes have been tested by adding 5, 10 or 15 U/mL to 50 mL of aqueous solution (1 multiplied by 10-4 mol/L) of o-chloro-phenol containing the catalytic membrane. The samples were irradiated using a QUV panel accelerated weathering tester, which simulates very well the solar radiation up to lambda equals 400 nm and HPLC was used to measure the variation of the compound's concentration with the time. While some enzymes (i.e., peroxidase) do not improve the photodegradation process since they do not survive under the irradiation conditions used, some of them show marked effect both in terms of rate degradation and time required to reach the total degradation of the compound examined. For example, the addition of Laccase reduces the 100% degradation time from 35 hrs to about 20 hrs. Attempts to immobilize the enzyme on the catalytic membrane (by adsorption) have been carried out and the performance of the catalyst with non-immobilized and immobilized enzyme has been studied.

Paper Details

Date Published: 9 October 1995
PDF: 10 pages
Proc. SPIE 2504, Environmental Monitoring and Hazardous Waste Site Remediation, (9 October 1995); doi: 10.1117/12.224086
Show Author Affiliations
Luigi Campanella, Univ. di Roma La Sapienza (Italy)
G. Crescentini, Univ. di Roma La Sapienza (Italy)
S. Militerno, Univ. di Roma La Sapienza (Italy)

Published in SPIE Proceedings Vol. 2504:
Environmental Monitoring and Hazardous Waste Site Remediation
Tuan Vo-Dinh, Editor(s)

© SPIE. Terms of Use
Back to Top