Share Email Print
cover

Proceedings Paper

Raman spectral analysis of high efficiency PVDF: nanocomposite films doped with MWCNT
Author(s): Padmaja Guggilla; Aschalew Kassu; Rachel Powell
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Nanocomposite films are of great interest in the development of infrared detectors and other technology. Polyvinylidenefluoride (PVDF) with excellent pyroelectric and piezoelectric properties such as fast, dynamic response has great potential for use in touch/tactile sensors, infrared detectors and thermal vidicon/imaging devices. PVDF:LiNbO3, PVDF:LiTaO3, and PVDF:BaTiO3 nanocomposites are fabricated with optimal characteristics using the solution casting technique. All these nanocomposite films are doped with multi-walled carbon nanotubes (MWCNT) with various weight percentages. The objective of this research was to characterize the low-frequency dielectric constant, dielectric loss and the pyroelectric properties of these composite films and thus the materials figures of merit for their use in space applications. Nanocomposites are also characterized using Raman Spectroscopy to get the finger print of these materials and their existence in the composite film. Dielectric constant and dielectric loss results are presented as a function of temperature and frequency, and pyroelectric coefficient as a function of temperature. Raman Spectrum of the nanocomposite materials is presented using 785nm laser. Obtained Raman spectrum matches with the literature available. Authors also observed that both microscopic structure and environmental conditions contributed to observed properties. Dielectric loss resulted from electromagnetic energy loss as manifested through phase differences between low-frequency input signal to the films and time varying polarization. In addition, both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped nanocomposite materials compared to pure PVDF and pure PVDF:LiNbO3, PVDF:LiTaO3, and PVDF:BaTiO3. Among all the MWCNT doped nanocomposite materials PVDF:LiTaO3 showed the highest Pyroelectric coefficient which would make the best material to be used in space applications compared to the other materials at test.

Paper Details

Date Published: 15 September 2016
PDF: 10 pages
Proc. SPIE 9927, Nanoengineering: Fabrication, Properties, Optics, and Devices XIII, 99271R (15 September 2016); doi: 10.1117/12.2240030
Show Author Affiliations
Padmaja Guggilla, Alabama A&M Univ. (United States)
Aschalew Kassu, Alabama A&M Univ. (United States)
Rachel Powell, Alabama A&M Univ. (United States)


Published in SPIE Proceedings Vol. 9927:
Nanoengineering: Fabrication, Properties, Optics, and Devices XIII
Eva M. Campo; Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top