Share Email Print
cover

Proceedings Paper

Predicting the potential moisture ingress characteristics of polyisobutylene based edge seals (Conference Presentation)
Author(s): Michael D. Kempe
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge-seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge-seal as a function of aging.

Paper Details

Date Published: 2 November 2016
PDF: 1 pages
Proc. SPIE 9938, Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, 993806 (2 November 2016); doi: 10.1117/12.2239915
Show Author Affiliations
Michael D. Kempe, National Renewable Energy Lab. (United States)


Published in SPIE Proceedings Vol. 9938:
Reliability of Photovoltaic Cells, Modules, Components, and Systems IX
Neelkanth G. Dhere; John H. Wohlgemuth; Keiichiro Sakurai, Editor(s)

© SPIE. Terms of Use
Back to Top