Share Email Print
cover

Proceedings Paper

Optical binding between dielectric nanowires (Conference Presentation)
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical binding occurs when micron-sized particles interact through the exchange of scattered photons. It has been observed both in systems of colloidal dielectric particles and between metallic nanoparticles, and can result in the formation of clusters and coupled dynamical behaviour. Optical binding between spherical particles has been studied in some detail, but little work has appeared in the literature to describe binding effects in lower symmetry systems. In the present paper we discuss recent theoretical work and computer simulations of optical binding effects operating between dielectric nanowires in counter propagating beams. The reduction in symmetry from simple spheres introduces new opportunities for binding, including different types of orientational ordering and anisotropies in the spatial arrangements that are possible for the bound particles. Various ordered configurations are possible, including ladder-like structures and oriented lattices. The stability of these structures to thermal perturbations will be discussed. Asymmetric arrangements of the nanowires are also possible, as a consequence of interactions between the nanowires and the underlying counter-propagating laser field. These configurations lead to a diversity of non-conservative effects, including uniform translation in linearly polarised beams and synchronous rotations in circularly polarised beams, suggesting potential applications of such bound structures in micro-machines.

Paper Details

Date Published: 10 November 2016
PDF: 1 pages
Proc. SPIE 9922, Optical Trapping and Optical Micromanipulation XIII, 99221T (10 November 2016); doi: 10.1117/12.2239886
Show Author Affiliations
Simon Hanna, Univ. of Bristol (United Kingdom)
Stephen H. Simpson, Institute of Scientific Instruments of the ASCR, v.v.i. (Czech Republic)


Published in SPIE Proceedings Vol. 9922:
Optical Trapping and Optical Micromanipulation XIII
Kishan Dholakia; Gabriel C. Spalding, Editor(s)

© SPIE. Terms of Use
Back to Top