Share Email Print

Proceedings Paper

Strong coupling and coherence in disordered semiconductors coupled to surface plasmons (Conference Presentation)
Author(s): Joël Bellessa; Clementine Symonds; Samuel aberra-guebrou
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Localized and delocalized plasmons in metallic nanoparticles are associated with a strongly confined electromagnetic field, inducing an enhanced interaction with emitters located in the close environment of the metal. When the plasmon/emitter interaction becomes predominant compared to the damping in the system, the system is in strong coupling regime leading to light matter hybridization. This strong coupling has been observed with a large number of materials, in particular disordered materials. These materials are constituted by a collection of independent emitters (molecules, semiconductor quantum dots...). The hybrid light/matter state can be described by considering a homogeneous absorbing system using coupled oscillator model. But if the microscopic structure of the molecular film close to a metallic film is considered, collective effects between the delocalized plasmon and the set of molecules are present. The spatial and dynamic properties of a set of molecules in strong coupling are dramatically modified compared to the same molecules in weak coupling (the usual configuration of emission). The excitations are not localised in a single particle anymore but delocalised on a large number of particles due to the formation of an extended hybridised state on several microns. We will describe some properties of disordered systems strongly coupled to surface plasmons and experimental demonstrations of the collective phenomena associated with the strong coupling. In particular we will present an experimental study of the coherent character of the emission of different emitters with a Young’s interferences setup. The system studied consists of J-aggregated dye (TDBC) in interaction with a surface plasmon on silver. The extension of the coherent state will also be discussed.

Paper Details

Date Published: 9 November 2016
PDF: 1 pages
Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 991807 (9 November 2016); doi: 10.1117/12.2239880
Show Author Affiliations
Joël Bellessa, Univ. Claude Bernard Lyon 1 (France)
Clementine Symonds, Univ. Claude Bernard Lyon 1 (France)
Samuel aberra-guebrou, Univ. Claude Bernard Lyon 1 (France)

Published in SPIE Proceedings Vol. 9918:
Metamaterials, Metadevices, and Metasystems 2016
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top