Share Email Print

Proceedings Paper

Frequency conversion in optically-excited active metadevices (Conference Presentation)
Author(s): Bumki Min
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The plethora of nonlinear optical phenomena can provide an innovative route for developing subwavelength-scale functional optical devices. One of the examples may be the nonlinear mixing of low energy photons (of which the wavelength is a few hundred micrometers) in atomically-thin materials. Here,the experimental proof on the optically-induced nonlinear mixing of terahertz resonances in graphene-integrated metadevices will be presented. Upon ultrafast optical excitation, the conductivity of graphene is reduced for a few picoseconds due to the increase in the Dirac-fermion scattering rate. This fast temporal change of graphene conductivity provides time-varying perturbation to the graphene-integrated metadevices and generates a difference frequency component by the mixing of meta-atoms’ two electric dipole resonances. Ultrafast terahertz spectroscopy corroborates that the characteristic difference-frequency resonance indeed originates from the coupled interaction between graphene and meta-atoms. Further elaborating this concept, it will be shown that the sudden merging of distinct meta-atoms’ resonances by ultrafast optical excitation can also result in frequency conversion.

Paper Details

Date Published: 9 November 2016
PDF: 1 pages
Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 99181P (9 November 2016); doi: 10.1117/12.2239401
Show Author Affiliations
Bumki Min, KAIST (Korea, Republic of)

Published in SPIE Proceedings Vol. 9918:
Metamaterials, Metadevices, and Metasystems 2016
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top