Share Email Print
cover

Proceedings Paper

A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)
Author(s): Jiangfeng Zhou; Khagendra Bhattarai; Sinhara Silva; Jiyeon Jeon; Junoh Kim; Sang Jun Lee; Zahyun Ku
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications," Advanced Optical Materials, vol. 2, pp. 275-279, 2014. [7] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, vol. 16, pp. 7181-7188, May 12 2008. [8] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Applied Physics Letters, vol. 96, p. 251104, 2010. [9] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters," Physical Review Letters, vol. 107, p. 045901, 07/18/ 2011. [10] T. Maier and H. Brückl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optics Letters, vol. 34, pp. 3012-3014, 2009/10/01 2009. [11] A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, "Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing," Nano Letters, vol. 11, pp. 4366-4369, 2011/10/12 2011. [12] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor," Nano Letters, vol. 10, pp. 2342-2348, Jul 2010. [13] G. H. Li, X. S. Chen, O. P. Li, C. X. Shao, Y. Jiang, L. J. Huang, et al., "A novel plasmonic resonance sensor based on an infrared perfect absorber," Journal of Physics D-Applied Physics, vol. 45, p. 205102, May 23 2012.

Paper Details

Date Published: 2 November 2016
PDF: 2 pages
Proc. SPIE 9956, Ultrafast Nonlinear Imaging and Spectroscopy IV, 99560H (2 November 2016); doi: 10.1117/12.2238834
Show Author Affiliations
Jiangfeng Zhou, Univ. of South Florida (United States)
Khagendra Bhattarai, Univ. of South Florida (United States)
Sinhara Silva, Univ. of South Florida (United States)
Jiyeon Jeon, Korea Research Institute of Standards and Science (Korea, Republic of)
Junoh Kim, Korea Research Institute of Standards and Science (Korea, Republic of)
Sang Jun Lee, Korea Research Institute of Standards and Science (Korea, Republic of)
Zahyun Ku, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 9956:
Ultrafast Nonlinear Imaging and Spectroscopy IV
Zhiwen Liu, Editor(s)

© SPIE. Terms of Use
Back to Top