Share Email Print

Proceedings Paper

Circular polarized incident light scattering properties at optical clearing in tissues
Author(s): Dongsheng Chen; Nan Zeng; Yunfei Wang; Honghui He; Valery V. Tuchin; Hui Ma
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper focuses on polarization imaging during optical clearing process in tissues due to refractive index matching of tissue structural components. We start with some single-dispersed tissue models, composed of large spheres, small spheres, and large cylinders, respectively. Along with the simulated refractive index matching inside and outside the scatterers, the linear polarized incident photons show similar decreased depolarization. It is worth noting that the circular polarized incident light show different polarization change for different scatterers, sensitive to scatterer size and shape. For small Rayleigh-like spherical scatterers, the circular depolarization also decreases with index matching. However, the depolarization by the larger scatterers can be enhanced, supported by the photon distribution change with the index matching in the backward detection. After some extreme points, the depolarization of circular polarized photons will be suppressed until almost disappear. Furthermore, by the simulation of hybrid-dispersed models, we can find out that the transmission of circular polarized photons during optical clearing, is more sensitive to the content of smaller scatterers in the turbid medium, and also has a close relationship with the proportion of the anisotropic scatterers. We also extract a character to describe the difference of linear and circular polarized photons. The value and the change of this character can help us to explain the main scatterers contributed to the polarization features of tissue-like medium during optical clearing. The above results indicate different polarization features for different scattering systems by optical clearing, which are potentially useful for studying optical clearing by polarization methods.

Paper Details

Date Published: 27 September 2016
PDF: 10 pages
Proc. SPIE 9953, Optical Modeling and Performance Predictions VIII, 995308 (27 September 2016); doi: 10.1117/12.2238789
Show Author Affiliations
Dongsheng Chen, Tsinghua Univ. (China)
Nan Zeng, Tsinghua Univ. (China)
Yunfei Wang, Tsinghua Univ. (China)
Honghui He, Tsinghua Univ. (China)
Valery V. Tuchin, Saratov National Research State Univ. (Russian Federation)
Tomsk National Research State Univ. (Russian Federation)
Institute of Precision Mechanics and Control (Russian Federation)
Hui Ma, Tsinghua Univ. (China)

Published in SPIE Proceedings Vol. 9953:
Optical Modeling and Performance Predictions VIII
Mark A. Kahan; Marie B. Levine-West, Editor(s)

© SPIE. Terms of Use
Back to Top