Share Email Print
cover

Proceedings Paper

Smartphone spectrometer for non-invasive diffuse reflectance spectroscopy based hemoglobin sensing (Conference Presentation)
Author(s): Perry S. Edwards

Paper Abstract

Fiber-optic based diffuse reflectance spectroscopy (DRS) is shown to be a highly specific and highly sensitive method for non-invasive detection of various cancers (e.g. cervical and oral) as well as many other diseases. Fiber-optic DRS diagnosis relies on non-invasive biomarker detection (e.g. oxy- and deoxy-hemoglobin) and can be done without the need for sophisticated laboratory analysis of samples. Thus, it is highly amenable for clinical adoption especially in resource scarce regions that have limited access to such developed laboratory infrastructure. Despite the demonstrated effectiveness of fiber-optic DRS, such systems remain cost prohibitive in many of these regions, mainly due to the use of bulky and expensive spectrometers. Here, a fiber-optic DRS system is coupled to a smartphone spectrometer and is proposed as a low-cost solution for non-invasive tissue hemoglobin sensing. The performance of the system is assessed by measuring tissue phantoms with varying hemoglobin concentrations. A DRS retrieval algorithm is used to extract hemoglobin parameters from the measurements and determine the accuracy of the system. The results are then compared with those of a previously reported fiber-optic DRS system which is based on a larger more expensive spectrometer system. The preliminary results are encouraging and indicate the potential of the smartphone spectrometer as a viable low-cost option for non-invasive tissue hemoglobin sensing.

Paper Details

Date Published: 2 November 2016
PDF: 1 pages
Proc. SPIE 9956, Ultrafast Nonlinear Imaging and Spectroscopy IV, 99560M (2 November 2016); doi: 10.1117/12.2238381
Show Author Affiliations
Perry S. Edwards, Atoptix, LLC (United States)


Published in SPIE Proceedings Vol. 9956:
Ultrafast Nonlinear Imaging and Spectroscopy IV
Zhiwen Liu, Editor(s)

© SPIE. Terms of Use
Back to Top