Share Email Print
cover

Proceedings Paper • new

Investigation of graphene applied on near infrared photodetector (Conference Presentation)
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The particular Graphene-Germanium-Graphene photodetector (GSG PD) is investigated in this research. Germanium has good absorption coefficient in near infrared such as 850 nm, 1310 nm and 1550 nm which are commonly used in optics communication. Generally, the metal electrode was utilized for photodetector and there were lots of light being loss. In recent years, graphene is found to be a good conductive film. It is a two-dimensional monolayer of sp2-bonded carbon atoms. In cases where synthesized by chemical vapor deposition (CVD), graphene is especially a promising candidate for transparent conductive films (TCFs) due to its exceptional electrical conductivity and high optical transmittance which is almost transparent in the wide wavelength range, especially including near infrared. Therefore, the higher photo current and responsivity of the device can be achieved. In this investigation, interdigitated graphene electrodes are used on the devices with the purposes of a relatively easy process for high-speed devices and a comparable process for the integrated circuit. We used the n-type Germanium as the substrates for the absorption of photodetector and different layers of graphene as the interdigitated electrodes. The interdigitated graphene electrode is prepared by transferred the graphene which is grown by CVD on the substrate first and then pattern by O2 plasma. The most direct method of measuring the photo current is to be incident a laser source by fiber and give a DC bias then using KEITHLEY 2400 Source Meter to measure current from photodetectors. As the result of that, we can calculate the responsivity by formula.

Paper Details

Date Published: 3 November 2016
PDF: 1 pages
Proc. SPIE 9932, Carbon Nanotubes, Graphene, and Emerging 2D Materials for Electronic and Photonic Devices IX, 99320R (3 November 2016); doi: 10.1117/12.2237294
Show Author Affiliations
I-Chun Lien, National Central Univ. (Taiwan)
Sheng-Hui Chen, National Central Univ. (Taiwan)


Published in SPIE Proceedings Vol. 9932:
Carbon Nanotubes, Graphene, and Emerging 2D Materials for Electronic and Photonic Devices IX
Manijeh Razeghi; Maziar Ghazinejad; Can Bayram; Jae Su Yu, Editor(s)

© SPIE. Terms of Use
Back to Top