Share Email Print

Proceedings Paper

Homogenization of epsilon near zero composite metamaterials (Conference Presentation)
Author(s): Anatoliy O. Pinchuk
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Epsilon Near Zero (ENZ) metamaterials are interest for a broad range of applications in optoelectronics, communication and photovoltaic. Composite metal-dielectric metamaterials can be designed to exhibit ENZ in a specific frequency range. However, the frequency range if the ENZ is oftentimes limited. Recently, we developed a few different routs to designs metal-dielectric metamaterials with a broadband ENZ in the visible and infrared frequency domain. In this talk, I will present a homogenization theory for 1D and 2D metamaterials based on a few different geometries of metal-dielectric composites. Our approach is conceptually simple, elegant, and technically feasible, while its underlying physics is clear. We use a homogenization technique to estimate the real part of the effective permittivity nulling for a few different geometries of metal-dielectric composites. The design of broadband epsilon-near-zero metamaterials have been demonstrated through the solution of an inverse problem. Furthermore, we consider a few different geometries for realization of a broadband ENZ, such as core-shell spherical nanoparticle and nano-cylinders.

Paper Details

Date Published: 9 November 2016
PDF: 1 pages
Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 991820 (9 November 2016); doi: 10.1117/12.2237059
Show Author Affiliations
Anatoliy O. Pinchuk, Univ. of Colorado at Colorado Springs (United States)

Published in SPIE Proceedings Vol. 9918:
Metamaterials, Metadevices, and Metasystems 2016
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

Video Presentation


© SPIE. Terms of Use
Back to Top