Share Email Print

Proceedings Paper

VIIRS day-night band (DNB) electronic hysteresis: characterization and correction
Author(s): Stephen Mills
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The VIIRS Day-Night Band (DNB) offers measurements over a dynamic range from full daylight to the dimmest nighttime. This makes radiometric calibration difficult because effects that are otherwise negligible become significant for the DNB. One of these effects is electronic hysteresis and this paper evaluates this effect and its impact on calibration. It also considers possible correction algorithms. The cause of this hysteresis is uncertain, but since the DNB uses a charge-coupled device (CCD) detector array, it is likely the result of residual charge or charge depletion. The effects of hysteresis are evident in DNB imagery. Steaks are visible in the cross-track direction around very bright objects such as gas flares. Dark streaks are also visible after lightning flashes. Each VIIRS scan is a sequence of 4 sectors: space view (SV); Earth-view (EV); blackbody (BB) view; and solar diffuser (SD) view. There are differences among these sectors in offset that can only be explained as being the result of hysteresis from one sector to the next. The most dramatic hysteresis effect is when the sun illuminates the SD and hysteresis is then observed in the SV and EV. Previously this was hypothesized to be due to stray light leaking from the SD chamber, but more careful evaluation shows that this can only be the result of hysteresis. There is a stray light correction algorithm that treats this as stray light, but there are problems with this that could be remedied by instead using the characterization presented here.

Paper Details

Date Published: 19 September 2016
PDF: 16 pages
Proc. SPIE 9972, Earth Observing Systems XXI, 99721H (19 September 2016); doi: 10.1117/12.2236071
Show Author Affiliations
Stephen Mills, Renaissance Man Engineering (United States)

Published in SPIE Proceedings Vol. 9972:
Earth Observing Systems XXI
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top