Share Email Print
cover

Proceedings Paper

New technologies for HWIL testing of WFOV, large-format FPA sensor systems
Author(s): Christopher Fink
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author’s team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

Paper Details

Date Published: 3 May 2016
PDF: 16 pages
Proc. SPIE 9820, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII, 98201B (3 May 2016); doi: 10.1117/12.2235500
Show Author Affiliations
Christopher Fink, JRM Technologies, Inc. (United States)


Published in SPIE Proceedings Vol. 9820:
Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII
Gerald C. Holst; Keith A. Krapels, Editor(s)

© SPIE. Terms of Use
Back to Top