Share Email Print

Proceedings Paper

Solution processed integrated pixel element for an imaging device
Author(s): K. Swathi; K. S. Narayan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We demonstrate the implementation of a solid state circuit/structure comprising of a high performing polymer field effect transistor (PFET) utilizing an oxide layer in conjunction with a self-assembled monolayer (SAM) as the dielectric and a bulk-heterostructure based organic photodiode as a CMOS-like pixel element for an imaging sensor. Practical usage of functional organic photon detectors requires on chip components for image capture and signal transfer as in the CMOS/CCD architecture rather than simple photodiode arrays in order to increase speed and sensitivity of the sensor. The availability of high performing PFETs with low operating voltage and photodiodes with high sensitivity provides the necessary prerequisite to implement a CMOS type image sensing device structure based on organic electronic devices. Solution processing routes in organic electronics offers relatively facile procedures to integrate these components, combined with unique features of large-area, form factor and multiple optical attributes. We utilize the inherent property of a binary mixture in a blend to phase-separate vertically and create a graded junction for effective photocurrent response. The implemented design enables photocharge generation along with on chip charge to voltage conversion with performance parameters comparable to traditional counterparts. Charge integration analysis for the passive pixel element using 2D TCAD simulations is also presented to evaluate the different processes that take place in the monolithic structure.

Paper Details

Date Published: 27 September 2016
PDF: 10 pages
Proc. SPIE 9944, Organic Sensors and Bioelectronics IX, 99440T (27 September 2016); doi: 10.1117/12.2235274
Show Author Affiliations
K. Swathi, Jawaharlal Nehru Ctr. for Advanced Scientific Research (India)
K. S. Narayan, Jawaharlal Nehru Ctr. for Advanced Scientific Research (India)

Published in SPIE Proceedings Vol. 9944:
Organic Sensors and Bioelectronics IX
Ioannis Kymissis; Ruth Shinar; Luisa Torsi, Editor(s)

© SPIE. Terms of Use
Back to Top