Share Email Print
cover

Proceedings Paper

Fast sub-electron detectors review for interferometry
Author(s): Philippe Feautrier; Jean-Luc Gach; Philippe Bério
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA interferometer (US) by the Lagrange laboratory from Observatoire de la Cote d'Azur. By operating the detector at gain 1000, the readout noise is as low as 0.1 e and data can be analyzed with a better contrast in photon counting mode.

Paper Details

Date Published: 8 August 2016
PDF: 14 pages
Proc. SPIE 9907, Optical and Infrared Interferometry and Imaging V, 990715 (8 August 2016); doi: 10.1117/12.2234143
Show Author Affiliations
Philippe Feautrier, Univ. Grenoble Alpes, IPAG (France)
First Light Imaging, SAS (France)
Jean-Luc Gach, First Light Imaging, SAS (France)
LAM, Lab. d’Astrophysique de Marseille (France)
Philippe Bério, Lab. Lagrange, Université Côte d'Azur, Observatoire de la Côte d'Azur (France)


Published in SPIE Proceedings Vol. 9907:
Optical and Infrared Interferometry and Imaging V
Fabien Malbet; Michelle J. Creech-Eakman; Peter G. Tuthill, Editor(s)

© SPIE. Terms of Use
Back to Top