Share Email Print
cover

Proceedings Paper

Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

Paper Details

Date Published: 29 July 2016
PDF: 10 pages
Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99043F (29 July 2016); doi: 10.1117/12.2233909
Show Author Affiliations
A J Eldorado Riggs, Princeton Univ. (United States)
Eric J. Cady, Jet Propulsion Lab. (United States)
Camilo Mejia Prada, Jet Propulsion Lab. (United States)
Brian D. Kern, Jet Propulsion Lab. (United States)
Hanying Zhou, Jet Propulsion Lab. (United States)
N. Jeremy Kasdin, Princeton Univ. (United States)
Tyler D. Groff, Princeton Univ. (United States)


Published in SPIE Proceedings Vol. 9904:
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
Howard A. MacEwen; Giovanni G. Fazio; Makenzie Lystrup; Natalie Batalha; Nicholas Siegler; Edward C. Tong, Editor(s)

© SPIE. Terms of Use
Back to Top