Share Email Print
cover

Proceedings Paper

A cryogenic 'set-and-forget' deformable mirror
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper discusses the development, realization and initial characterization of a demonstrator for a cryogenic 'set and forget' deformable mirror. Many optical and cryogenic infrared instruments on modern very and extremely large telescopes aim at diffraction-limited performance and require total wave front errors in the order of 50 nanometers or less. At the same time, their complex optical functionality requires either a large number of spherical mirrors or several complex free-form mirrors. Due to manufacturing and alignment tolerances, each mirror contributes static aberrations to the wave front. Many of these aberrations are not known in the design phase and can only be measured once the system has been assembled. A 'set-and-forget' deformable mirror can be used to compensate for these aberrations, making it especially interesting for systems with complex free-form mirrors or cryogenic systems where access to iterative realignment is very difficult or time consuming.

The mirror with an optical diameter of 200 mm is designed to correct wave front aberrations of up to 2 μm root-mean square (rms). The shape of the wave front is approximated by the first 15 Zernike modes. Finite element analysis of the mirror shows a theoretically possible reduction of the wave front error from 2 μm to 53 nm rms. To produce the desired shapes, the mirror surface is controlled by 19 identical actuator modules at the back of the mirror.

The actuator modules use commercially available Piezo-Knob actuators with a high technology readiness level (TRL). These provide nanometer resolution at cryogenic temperatures combined with high positional stability, and allow for the system to be powered off once the desired shape is obtained. The stiff design provides a high resonance frequency (>200 Hz) to suppress external disturbances.

A full-size demonstrator of the deformable mirror containing 6 actuators and 13 dummy actuators is realized and characterized. Measurement results show that the actuators can provide sufficient stroke to correct the 2 μm rms WFE. The resolution of the actuator influence functions is found to be 0.24 nm rms or better depending on the position of the actuator within the grid. Superposition of the actuator influence functions shows that a 2 μm rms WFE can be accurately corrected with a 38 nm fitting error. Due to the manufacturing method of the demonstrator an artificially large print-through error of 182 nm is observed. The main cause of this print-through error has been identified and will be reduced in future design iterations. After these design changes the system is expected to have a total residual error of less than 70 nm and offer diffraction limited performance (λ14) for wavelengths of 1 μm and above.

Paper Details

Date Published: 22 July 2016
PDF: 8 pages
Proc. SPIE 9912, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, 99121B (22 July 2016); doi: 10.1117/12.2231402
Show Author Affiliations
Robin Trines, Janssen Precision Engineering B.V. (Netherlands)
Huub Janssen, Leiden Univ. (Netherlands)
Sander Paalvast, Janssen Precision Engineering B.V. (Netherlands)
Maurice Teuwen, Janssen Precision Engineering B.V. (Netherlands)
Bernhard Brandl, Leiden Univ. (Netherlands)
Michiel Rodenhuis, Leiden Univ. (Netherlands)


Published in SPIE Proceedings Vol. 9912:
Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II
Ramón Navarro; James H. Burge, Editor(s)

© SPIE. Terms of Use
Back to Top